1567 lines
61 KiB
Rust
1567 lines
61 KiB
Rust
//! Module containing the `Flattener` to process a program that it is R1CS-able.
|
|
//!
|
|
//! @file flatten.rs
|
|
//! @author Dennis Kuhnert <dennis.kuhnert@campus.tu-berlin.de>
|
|
//! @author Jacob Eberhardt <jacob.eberhardt@tu-berlin.de>
|
|
//! @date 2017
|
|
|
|
use std::collections::{HashSet};
|
|
use typed_absy::*;
|
|
use field::Field;
|
|
use flat_absy::*;
|
|
use substitution::direct_substitution::DirectSubstitution;
|
|
use substitution::Substitution;
|
|
use helpers::{DirectiveStatement, Helper, RustHelper};
|
|
use types::Type;
|
|
use types::Signature;
|
|
use types::conversions::cast;
|
|
use absy::variable::Variable;
|
|
use absy::parameter::Parameter;
|
|
use bimap::BiMap;
|
|
|
|
/// Flattener, computes flattened program.
|
|
#[derive(Debug)]
|
|
pub struct Flattener {
|
|
/// Number of bits needed to represent the maximum value.
|
|
bits: usize,
|
|
/// Vector containing all used variables while processing the program.
|
|
variables: HashSet<FlatVariable>,
|
|
/// Map of renamings for reassigned variables while processing the program.
|
|
substitution: DirectSubstitution,
|
|
/// Index of the next introduced variable while processing the program.
|
|
next_var_idx: usize,
|
|
///
|
|
bijection: BiMap<String, FlatVariable>,
|
|
}
|
|
impl Flattener {
|
|
/// Returns a `Flattener` with fresh a fresh [substitution] and [variables].
|
|
///
|
|
/// # Arguments
|
|
///
|
|
/// * `bits` - Number of bits needed to represent the maximum value.
|
|
pub fn new(bits: usize) -> Flattener {
|
|
Flattener {
|
|
bits: bits,
|
|
variables: HashSet::new(),
|
|
substitution: DirectSubstitution::new(),
|
|
next_var_idx: 0,
|
|
bijection: BiMap::new(),
|
|
}
|
|
}
|
|
|
|
/// Loads the standard library
|
|
fn load_stdlib<T: Field>(
|
|
&mut self,
|
|
functions_flattened: &mut Vec<FlatFunction<T>>,
|
|
) -> () {
|
|
|
|
// Load type casting functions
|
|
functions_flattened.push(cast(&Type::Boolean, &Type::FieldElement));
|
|
functions_flattened.push(cast(&Type::FieldElement, &Type::Boolean));
|
|
|
|
// Load IfElse helpers
|
|
let ie = TypedFunction {
|
|
id: "_if_else_field".to_string(),
|
|
arguments: vec![Parameter {
|
|
id: Variable {
|
|
id: "condition".to_string(),
|
|
_type: Type::Boolean
|
|
},
|
|
private: true
|
|
},
|
|
Parameter {
|
|
id: Variable {
|
|
id: "consequence".to_string(),
|
|
_type: Type::FieldElement
|
|
},
|
|
private: true
|
|
},
|
|
Parameter {
|
|
id: Variable {
|
|
id: "alternative".to_string(),
|
|
_type: Type::FieldElement
|
|
},
|
|
private: true
|
|
}],
|
|
statements: vec![
|
|
TypedStatement::Definition(
|
|
Variable::field_element("condition_as_field"),
|
|
FieldElementExpression::FunctionCall(
|
|
"_bool_to_field".to_string(),
|
|
vec![
|
|
BooleanExpression::Identifier("condition".to_string()).into()
|
|
]
|
|
).into()
|
|
),
|
|
TypedStatement::Return(
|
|
vec![
|
|
FieldElementExpression::Add(
|
|
box FieldElementExpression::Mult(
|
|
box FieldElementExpression::Identifier("condition_as_field".to_string()),
|
|
box FieldElementExpression::Identifier("consequence".to_string()),
|
|
),
|
|
box FieldElementExpression::Mult(
|
|
box FieldElementExpression::Sub(
|
|
box FieldElementExpression::Number(T::one()),
|
|
box FieldElementExpression::Identifier("condition_as_field".to_string())
|
|
),
|
|
box FieldElementExpression::Identifier("alternative".to_string())
|
|
)
|
|
).into()
|
|
]
|
|
)
|
|
],
|
|
signature: Signature::new()
|
|
.inputs(vec![Type::Boolean, Type::FieldElement, Type::FieldElement])
|
|
.outputs(vec![Type::FieldElement])
|
|
};
|
|
|
|
let ief = self.flatten_function(
|
|
functions_flattened,
|
|
ie,
|
|
);
|
|
functions_flattened.push(ief);
|
|
}
|
|
|
|
/// Flattens a boolean expression
|
|
///
|
|
/// # Arguments
|
|
///
|
|
/// * `statements_flattened` - Vector where new flattened statements can be added.
|
|
/// * `condition` - `Condition` that will be flattened.
|
|
fn flatten_boolean_expression<T: Field>(
|
|
&mut self,
|
|
functions_flattened: &Vec<FlatFunction<T>>,
|
|
arguments_flattened: &Vec<FlatParameter>,
|
|
statements_flattened: &mut Vec<FlatStatement<T>>,
|
|
expression: BooleanExpression<T>,
|
|
) -> FlatExpression<T> { // those will be booleans in the future
|
|
match expression {
|
|
BooleanExpression::Identifier(x) => FlatExpression::Identifier(self.bijection.get_by_left(&x).unwrap().clone()),
|
|
BooleanExpression::Lt(box lhs, box rhs) => {
|
|
|
|
// We know from semantic checking that lhs and rhs have the same type
|
|
// What the expression will flatten to depends on that type
|
|
|
|
let lhs_flattened = self.flatten_field_expression(
|
|
functions_flattened,
|
|
arguments_flattened,
|
|
statements_flattened,
|
|
lhs,
|
|
);
|
|
let rhs_flattened = self.flatten_field_expression(
|
|
functions_flattened,
|
|
arguments_flattened,
|
|
statements_flattened,
|
|
rhs,
|
|
);
|
|
|
|
// lhs
|
|
let lhs_id = self.use_sym();
|
|
statements_flattened
|
|
.push(FlatStatement::Definition(lhs_id, lhs_flattened));
|
|
|
|
// check that lhs and rhs are within the right range, ie, their last two bits are zero
|
|
|
|
// lhs
|
|
{
|
|
// define variables for the bits
|
|
let lhs_bits: Vec<FlatVariable> = (0..self.bits).map(|_| self.use_sym()).collect();
|
|
|
|
// add a directive to get the bits
|
|
statements_flattened.push(FlatStatement::Directive(DirectiveStatement::new(
|
|
lhs_bits.clone(),
|
|
Helper::Rust(RustHelper::Bits),
|
|
vec![lhs_id]
|
|
)));
|
|
|
|
// bitness checks
|
|
for i in 0..self.bits - 2 {
|
|
statements_flattened.push(FlatStatement::Condition(
|
|
FlatExpression::Identifier(lhs_bits[i + 2]),
|
|
FlatExpression::Mult(
|
|
box FlatExpression::Identifier(lhs_bits[i + 2]),
|
|
box FlatExpression::Identifier(lhs_bits[i + 2]),
|
|
),
|
|
));
|
|
}
|
|
|
|
// bit decomposition check
|
|
let mut lhs_sum = FlatExpression::Number(T::from(0));
|
|
|
|
for i in 0..self.bits - 2 {
|
|
lhs_sum = FlatExpression::Add(
|
|
box lhs_sum,
|
|
box FlatExpression::Mult(
|
|
box FlatExpression::Identifier(lhs_bits[i + 2]),
|
|
box FlatExpression::Number(T::from(2).pow(self.bits - 2 - i - 1)),
|
|
),
|
|
);
|
|
}
|
|
|
|
statements_flattened
|
|
.push(FlatStatement::Condition(
|
|
FlatExpression::Identifier(lhs_id),
|
|
lhs_sum
|
|
)
|
|
);
|
|
}
|
|
|
|
// rhs
|
|
let rhs_id = self.use_sym();
|
|
statements_flattened
|
|
.push(FlatStatement::Definition(rhs_id, rhs_flattened));
|
|
|
|
// rhs
|
|
{
|
|
// define variables for the bits
|
|
let rhs_bits: Vec<FlatVariable> = (0..self.bits).map(|_| self.use_sym()).collect();
|
|
|
|
// add a directive to get the bits
|
|
statements_flattened.push(FlatStatement::Directive(DirectiveStatement::new(
|
|
rhs_bits.clone(),
|
|
Helper::Rust(RustHelper::Bits),
|
|
vec![rhs_id]
|
|
)));
|
|
|
|
// bitness checks
|
|
for i in 0..self.bits - 2 {
|
|
statements_flattened.push(FlatStatement::Condition(
|
|
FlatExpression::Identifier(rhs_bits[i + 2]),
|
|
FlatExpression::Mult(
|
|
box FlatExpression::Identifier(rhs_bits[i + 2]),
|
|
box FlatExpression::Identifier(rhs_bits[i + 2]),
|
|
),
|
|
));
|
|
}
|
|
|
|
// bit decomposition check
|
|
let mut rhs_sum = FlatExpression::Number(T::from(0));
|
|
|
|
for i in 0..self.bits - 2 {
|
|
rhs_sum = FlatExpression::Add(
|
|
box rhs_sum,
|
|
box FlatExpression::Mult(
|
|
box FlatExpression::Identifier(rhs_bits[i + 2]),
|
|
box FlatExpression::Number(T::from(2).pow(self.bits - 2 - i - 1)),
|
|
),
|
|
);
|
|
}
|
|
|
|
statements_flattened
|
|
.push(FlatStatement::Condition(
|
|
FlatExpression::Identifier(rhs_id),
|
|
rhs_sum
|
|
)
|
|
);
|
|
}
|
|
|
|
// sym = (lhs * 2) - (rhs * 2)
|
|
let subtraction_result_id = self.use_sym();
|
|
|
|
statements_flattened.push(FlatStatement::Definition(
|
|
subtraction_result_id,
|
|
FlatExpression::Sub(
|
|
box FlatExpression::Mult(box FlatExpression::Number(T::from(2)), box FlatExpression::Identifier(lhs_id)),
|
|
box FlatExpression::Mult(box FlatExpression::Number(T::from(2)), box FlatExpression::Identifier(rhs_id)),
|
|
),
|
|
));
|
|
|
|
// define variables for the bits
|
|
let sub_bits: Vec<FlatVariable> = (0..self.bits).map(|_| self.use_sym()).collect();
|
|
|
|
// add a directive to get the bits
|
|
statements_flattened.push(FlatStatement::Directive(DirectiveStatement::new(
|
|
sub_bits.clone(),
|
|
Helper::Rust(RustHelper::Bits),
|
|
vec![subtraction_result_id]
|
|
)));
|
|
|
|
// bitness checks
|
|
for i in 0..self.bits {
|
|
statements_flattened.push(FlatStatement::Condition(
|
|
FlatExpression::Identifier(sub_bits[i]),
|
|
FlatExpression::Mult(
|
|
box FlatExpression::Identifier(sub_bits[i]),
|
|
box FlatExpression::Identifier(sub_bits[i]),
|
|
),
|
|
));
|
|
}
|
|
|
|
// sum(sym_b{i} * 2**i)
|
|
let mut expr = FlatExpression::Number(T::from(0));
|
|
|
|
for i in 0..self.bits {
|
|
expr = FlatExpression::Add(
|
|
box expr,
|
|
box FlatExpression::Mult(
|
|
box FlatExpression::Identifier(sub_bits[i]),
|
|
box FlatExpression::Number(T::from(2).pow(self.bits - i - 1)),
|
|
),
|
|
);
|
|
}
|
|
|
|
statements_flattened
|
|
.push(FlatStatement::Condition(
|
|
FlatExpression::Identifier(subtraction_result_id),
|
|
expr
|
|
)
|
|
);
|
|
|
|
FlatExpression::Identifier(sub_bits[0])
|
|
}
|
|
BooleanExpression::Eq(box lhs, box rhs) => {
|
|
|
|
// We know from semantic checking that lhs and rhs have the same type
|
|
// What the expression will flatten to depends on that type
|
|
|
|
// Wanted: (Y = (X != 0) ? 1 : 0)
|
|
// X = a - b
|
|
// # Y = if X == 0 then 0 else 1 fi
|
|
// # M = if X == 0 then 1 else 1/X fi
|
|
// Y == X * M
|
|
// 0 == (1-Y) * X
|
|
|
|
let name_x = self.use_sym();
|
|
let name_y = self.use_sym();
|
|
let name_m = self.use_sym();
|
|
let name_1_y = self.use_sym();
|
|
|
|
let x = self.flatten_field_expression(
|
|
functions_flattened,
|
|
arguments_flattened,
|
|
statements_flattened,
|
|
FieldElementExpression::Sub(box lhs, box rhs),
|
|
);
|
|
|
|
statements_flattened.push(FlatStatement::Definition(name_x, x));
|
|
statements_flattened.push(
|
|
FlatStatement::Directive(DirectiveStatement {
|
|
outputs: vec![name_y, name_m],
|
|
inputs: vec![name_x],
|
|
helper: Helper::Rust(RustHelper::ConditionEq)
|
|
})
|
|
);
|
|
statements_flattened.push(FlatStatement::Condition(
|
|
FlatExpression::Identifier(name_y),
|
|
FlatExpression::Mult(box FlatExpression::Identifier(name_x), box FlatExpression::Identifier(name_m)),
|
|
));
|
|
statements_flattened.push(FlatStatement::Definition(
|
|
name_1_y,
|
|
FlatExpression::Sub(box FlatExpression::Number(T::one()), box FlatExpression::Identifier(name_y)),
|
|
));
|
|
statements_flattened.push(FlatStatement::Condition(
|
|
FlatExpression::Number(T::zero()),
|
|
FlatExpression::Mult(box FlatExpression::Identifier(name_1_y), box FlatExpression::Identifier(name_x)),
|
|
));
|
|
|
|
FlatExpression::Identifier(name_1_y)
|
|
},
|
|
BooleanExpression::Or(box lhs, box rhs) => {
|
|
let x = self.flatten_boolean_expression(
|
|
functions_flattened,
|
|
arguments_flattened,
|
|
statements_flattened,
|
|
lhs
|
|
);
|
|
let y = self.flatten_boolean_expression(
|
|
functions_flattened,
|
|
arguments_flattened,
|
|
statements_flattened,
|
|
rhs
|
|
);
|
|
assert!(x.is_linear() && y.is_linear());
|
|
let name_x = self.use_sym();
|
|
let name_y = self.use_sym();
|
|
let name_x_or_y = self.use_sym();
|
|
statements_flattened.push(FlatStatement::Definition(
|
|
name_x,
|
|
x
|
|
));
|
|
statements_flattened.push(FlatStatement::Definition(
|
|
name_y,
|
|
y
|
|
));
|
|
statements_flattened.push(FlatStatement::Definition(
|
|
name_x_or_y,
|
|
FlatExpression::Sub(
|
|
box FlatExpression::Add(
|
|
box FlatExpression::Identifier(name_x),
|
|
box FlatExpression::Identifier(name_y)
|
|
),
|
|
box FlatExpression::Mult(
|
|
box FlatExpression::Identifier(name_x),
|
|
box FlatExpression::Identifier(name_y)
|
|
)
|
|
)
|
|
));
|
|
FlatExpression::Identifier(name_x_or_y)
|
|
},
|
|
BooleanExpression::And(box lhs, box rhs) => {
|
|
let x = self.flatten_boolean_expression(
|
|
functions_flattened,
|
|
arguments_flattened,
|
|
statements_flattened,
|
|
lhs
|
|
);
|
|
let y = self.flatten_boolean_expression(
|
|
functions_flattened,
|
|
arguments_flattened,
|
|
statements_flattened,
|
|
rhs
|
|
);
|
|
let name_x_and_y = self.use_sym();
|
|
// flatten_boolean_expression always returns a linear term
|
|
assert!(x.is_linear() && y.is_linear());
|
|
statements_flattened.push(FlatStatement::Definition(
|
|
name_x_and_y, FlatExpression::Mult(box x, box y))
|
|
);
|
|
|
|
FlatExpression::Identifier(name_x_and_y)
|
|
},
|
|
BooleanExpression::Value(b) => {
|
|
FlatExpression::Number(match b {
|
|
true => T::from(1),
|
|
false => T::from(0)
|
|
})
|
|
},
|
|
_ => unimplemented!(),
|
|
}
|
|
}
|
|
|
|
fn flatten_function_call<T: Field>(
|
|
&mut self,
|
|
functions_flattened: &Vec<FlatFunction<T>>,
|
|
arguments_flattened: &Vec<FlatParameter>,
|
|
statements_flattened: &mut Vec<FlatStatement<T>>,
|
|
id: &String,
|
|
return_types: Vec<Type>,
|
|
param_expressions: &Vec<TypedExpression<T>>
|
|
) -> FlatExpressionList<T> {
|
|
|
|
let passed_signature = Signature::new()
|
|
.inputs(param_expressions.into_iter().map(|e| e.get_type()).collect())
|
|
.outputs(return_types);
|
|
|
|
for funct in functions_flattened {
|
|
if funct.id == *id && funct.signature == passed_signature {
|
|
// funct is now the called function
|
|
|
|
// Stores prefixed variables
|
|
|
|
let mut replacement_map = DirectSubstitution::new();
|
|
|
|
// Handle complex parameters and assign values:
|
|
// Rename Parameters, assign them to values in call. Resolve complex expressions with definitions
|
|
for (i, param_expr) in param_expressions.clone().into_iter().enumerate() {
|
|
let rhs = self.flatten_expression(
|
|
functions_flattened,
|
|
arguments_flattened,
|
|
statements_flattened,
|
|
param_expr,
|
|
).apply_recursive_substitution(&self.substitution);
|
|
|
|
let new_var = self.issue_new_variable();
|
|
statements_flattened
|
|
.push(FlatStatement::Definition(new_var, rhs));
|
|
replacement_map.insert(funct.arguments.get(i).unwrap().id.clone(), new_var);
|
|
}
|
|
|
|
// Ensure Renaming and correct returns:
|
|
// add all flattened statements, adapt return statement
|
|
for stat in funct.statements.clone() {
|
|
match stat {
|
|
// set return statements right sidreturne as expression result
|
|
FlatStatement::Return(list) => {
|
|
return FlatExpressionList {
|
|
expressions: list.expressions.into_iter().map(|x| x.apply_direct_substitution(&replacement_map)).collect()
|
|
}
|
|
},
|
|
FlatStatement::Definition(var, rhs) => {
|
|
let new_var = self.issue_new_variable();
|
|
replacement_map.insert(var, new_var);
|
|
let new_rhs = rhs.apply_direct_substitution(&replacement_map);
|
|
statements_flattened.push(
|
|
FlatStatement::Definition(new_var, new_rhs)
|
|
);
|
|
},
|
|
FlatStatement::Condition(lhs, rhs) => {
|
|
let new_lhs = lhs.apply_direct_substitution(&replacement_map);
|
|
let new_rhs = rhs.apply_direct_substitution(&replacement_map);
|
|
statements_flattened
|
|
.push(FlatStatement::Condition(new_lhs, new_rhs));
|
|
},
|
|
FlatStatement::Directive(d) => {
|
|
let new_outputs = d.outputs.into_iter().map(|o| {
|
|
let new_o = self.issue_new_variable();
|
|
replacement_map.insert(o, new_o);
|
|
new_o
|
|
}).collect();
|
|
let new_inputs = d.inputs.iter().map(|i| replacement_map.get(&i).unwrap()).collect();
|
|
statements_flattened.push(
|
|
FlatStatement::Directive(
|
|
DirectiveStatement {
|
|
outputs: new_outputs,
|
|
inputs: new_inputs,
|
|
helper: d.helper.clone()
|
|
}
|
|
)
|
|
)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
panic!(
|
|
"TypedFunction definition for function {} with {:?} argument(s) not found. Should have been detected during semantic checking.",
|
|
id,
|
|
param_expressions
|
|
);
|
|
}
|
|
|
|
fn flatten_expression<T: Field>(
|
|
&mut self,
|
|
functions_flattened: &Vec<FlatFunction<T>>,
|
|
arguments_flattened: &Vec<FlatParameter>,
|
|
statements_flattened: &mut Vec<FlatStatement<T>>,
|
|
expr: TypedExpression<T>,
|
|
) -> FlatExpression<T> {
|
|
match expr {
|
|
TypedExpression::FieldElement(e) =>
|
|
self.flatten_field_expression(
|
|
functions_flattened,
|
|
arguments_flattened,
|
|
statements_flattened,
|
|
e,
|
|
),
|
|
TypedExpression::Boolean(e) =>
|
|
self.flatten_boolean_expression(
|
|
functions_flattened,
|
|
arguments_flattened,
|
|
statements_flattened,
|
|
e,
|
|
),
|
|
}
|
|
}
|
|
|
|
fn flatten_field_expression<T: Field>(
|
|
&mut self,
|
|
functions_flattened: &Vec<FlatFunction<T>>,
|
|
arguments_flattened: &Vec<FlatParameter>,
|
|
statements_flattened: &mut Vec<FlatStatement<T>>,
|
|
expr: FieldElementExpression<T>,
|
|
) -> FlatExpression<T> {
|
|
match expr {
|
|
FieldElementExpression::Number(x) => FlatExpression::Number(x), // force to be a field element
|
|
FieldElementExpression::Identifier(x) => FlatExpression::Identifier(self.bijection.get_by_left(&x).unwrap().clone()),
|
|
FieldElementExpression::Add(box left, box right) => {
|
|
let left_flattened = self.flatten_field_expression(
|
|
functions_flattened,
|
|
arguments_flattened,
|
|
statements_flattened,
|
|
left,
|
|
);
|
|
let right_flattened = self.flatten_field_expression(
|
|
functions_flattened,
|
|
arguments_flattened,
|
|
statements_flattened,
|
|
right,
|
|
);
|
|
let new_left = if left_flattened.is_linear() {
|
|
left_flattened
|
|
} else {
|
|
let id = self.use_sym();
|
|
statements_flattened
|
|
.push(FlatStatement::Definition(id, left_flattened));
|
|
FlatExpression::Identifier(id)
|
|
};
|
|
let new_right = if right_flattened.is_linear() {
|
|
right_flattened
|
|
} else {
|
|
let id = self.use_sym();
|
|
statements_flattened
|
|
.push(FlatStatement::Definition(id, right_flattened));
|
|
FlatExpression::Identifier(id)
|
|
};
|
|
FlatExpression::Add(box new_left, box new_right)
|
|
},
|
|
FieldElementExpression::Sub(box left, box right) => {
|
|
let left_flattened = self.flatten_field_expression(
|
|
functions_flattened,
|
|
arguments_flattened,
|
|
statements_flattened,
|
|
left,
|
|
);
|
|
let right_flattened = self.flatten_field_expression(
|
|
functions_flattened,
|
|
arguments_flattened,
|
|
statements_flattened,
|
|
right,
|
|
);
|
|
let new_left = if left_flattened.is_linear() {
|
|
left_flattened
|
|
} else {
|
|
let id = self.use_sym();
|
|
statements_flattened
|
|
.push(FlatStatement::Definition(id, left_flattened));
|
|
FlatExpression::Identifier(id)
|
|
};
|
|
let new_right = if right_flattened.is_linear() {
|
|
right_flattened
|
|
} else {
|
|
let id = self.use_sym();
|
|
statements_flattened
|
|
.push(FlatStatement::Definition(id, right_flattened));
|
|
FlatExpression::Identifier(id)
|
|
};
|
|
FlatExpression::Sub(box new_left, box new_right)
|
|
},
|
|
FieldElementExpression::Mult(box left, box right) => {
|
|
let left_flattened = self.flatten_field_expression(
|
|
functions_flattened,
|
|
arguments_flattened,
|
|
statements_flattened,
|
|
left,
|
|
);
|
|
let right_flattened = self.flatten_field_expression(
|
|
functions_flattened,
|
|
arguments_flattened,
|
|
statements_flattened,
|
|
right,
|
|
);
|
|
let new_left = if left_flattened.is_linear() {
|
|
if let FlatExpression::Sub(..) = left_flattened {
|
|
let id = self.use_sym();
|
|
statements_flattened
|
|
.push(FlatStatement::Definition(id, left_flattened));
|
|
FlatExpression::Identifier(id)
|
|
} else {
|
|
left_flattened
|
|
}
|
|
} else {
|
|
let id = self.use_sym();
|
|
statements_flattened
|
|
.push(FlatStatement::Definition(id, left_flattened));
|
|
FlatExpression::Identifier(id)
|
|
};
|
|
let new_right = if right_flattened.is_linear() {
|
|
if let FlatExpression::Sub(..) = right_flattened {
|
|
let id = self.use_sym();
|
|
statements_flattened
|
|
.push(FlatStatement::Definition(id, right_flattened));
|
|
FlatExpression::Identifier(id)
|
|
} else {
|
|
right_flattened
|
|
}
|
|
} else {
|
|
let id = self.use_sym();
|
|
statements_flattened
|
|
.push(FlatStatement::Definition(id, right_flattened));
|
|
FlatExpression::Identifier(id)
|
|
};
|
|
FlatExpression::Mult(box new_left, box new_right)
|
|
},
|
|
FieldElementExpression::Div(box left, box right) => {
|
|
let left_flattened = self.flatten_field_expression(
|
|
functions_flattened,
|
|
arguments_flattened,
|
|
statements_flattened,
|
|
left,
|
|
);
|
|
let right_flattened = self.flatten_field_expression(
|
|
functions_flattened,
|
|
arguments_flattened,
|
|
statements_flattened,
|
|
right,
|
|
);
|
|
let new_left = {
|
|
let id = self.use_sym();
|
|
statements_flattened
|
|
.push(FlatStatement::Definition(id, left_flattened));
|
|
FlatExpression::Identifier(id)
|
|
};
|
|
let new_right = {
|
|
let id = self.use_sym();
|
|
statements_flattened
|
|
.push(FlatStatement::Definition(id, right_flattened));
|
|
FlatExpression::Identifier(id)
|
|
};
|
|
FlatExpression::Div(box new_left, box new_right)
|
|
},
|
|
FieldElementExpression::Pow(box base, box exponent) => {
|
|
match exponent {
|
|
FieldElementExpression::Number(ref e) => {
|
|
// flatten the base expression
|
|
let base_flattened = self.flatten_field_expression(
|
|
functions_flattened,
|
|
arguments_flattened,
|
|
statements_flattened,
|
|
base.clone(),
|
|
).apply_recursive_substitution(&self.substitution);
|
|
|
|
// we require from the base to be linear
|
|
// TODO change that
|
|
assert!(base_flattened.is_linear());
|
|
|
|
match e {
|
|
// flatten(base ** 1) == flatten(base)
|
|
e if *e == T::one() => {
|
|
base_flattened
|
|
},
|
|
// flatten(base ** 2) == flatten(base) * flatten(base)
|
|
// in this case, no need to define an intermediate variable
|
|
// as if a is linear, a ** 2 quadratic
|
|
e if *e == T::from(2) => {
|
|
FlatExpression::Mult(box base_flattened.clone(), box base_flattened)
|
|
},
|
|
// flatten(base ** n) = flatten(base) * flatten(base ** (n-1))
|
|
e => {
|
|
// flatten(base ** (n-1))
|
|
let tmp_expression = self.flatten_field_expression(
|
|
functions_flattened,
|
|
arguments_flattened,
|
|
statements_flattened,
|
|
FieldElementExpression::Pow(
|
|
box base,
|
|
box FieldElementExpression::Number(e.clone() - T::one()),
|
|
),
|
|
).apply_recursive_substitution(&self.substitution);
|
|
|
|
let id = self.use_sym();
|
|
|
|
statements_flattened.push(
|
|
FlatStatement::Definition(id, tmp_expression));
|
|
|
|
FlatExpression::Mult(
|
|
box FlatExpression::Identifier(id),
|
|
box base_flattened,
|
|
)
|
|
}
|
|
}
|
|
},
|
|
_ => panic!("Expected number as pow exponent"),
|
|
}
|
|
},
|
|
FieldElementExpression::IfElse(box condition, box consequent, box alternative) => {
|
|
self.flatten_function_call(
|
|
functions_flattened,
|
|
arguments_flattened,
|
|
statements_flattened,
|
|
&"_if_else_field".to_string(),
|
|
vec![Type::FieldElement],
|
|
&vec![condition.into(), consequent.into(), alternative.into()],
|
|
).expressions[0].clone()
|
|
|
|
},
|
|
FieldElementExpression::FunctionCall(ref id, ref param_expressions) => {
|
|
let exprs_flattened = self.flatten_function_call(
|
|
functions_flattened,
|
|
arguments_flattened,
|
|
statements_flattened,
|
|
id,
|
|
vec![Type::FieldElement],
|
|
param_expressions
|
|
);
|
|
assert!(exprs_flattened.expressions.len() == 1); // outside of MultipleDefinition, FunctionCalls must return a single value
|
|
exprs_flattened.expressions[0].clone()
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn flatten_statement<T: Field>(
|
|
&mut self,
|
|
functions_flattened: &mut Vec<FlatFunction<T>>,
|
|
arguments_flattened: &Vec<FlatParameter>,
|
|
statements_flattened: &mut Vec<FlatStatement<T>>,
|
|
stat: TypedStatement<T>,
|
|
) {
|
|
match stat {
|
|
TypedStatement::Return(exprs) => {
|
|
let flat_expressions = exprs.into_iter().map(|expr|
|
|
self.flatten_expression(
|
|
functions_flattened,
|
|
arguments_flattened,
|
|
statements_flattened,
|
|
expr
|
|
).apply_recursive_substitution(&self.substitution)
|
|
).collect();
|
|
|
|
statements_flattened.push(
|
|
FlatStatement::Return(
|
|
FlatExpressionList {
|
|
expressions: flat_expressions
|
|
}
|
|
)
|
|
);
|
|
}
|
|
TypedStatement::Declaration(_) => {
|
|
// declarations have already been checked
|
|
()
|
|
}
|
|
TypedStatement::Definition(v, expr) => {
|
|
|
|
// define n variables with n the number of primitive types for v_type
|
|
// assign them to the n primitive types for expr
|
|
|
|
let rhs = self.flatten_expression(
|
|
functions_flattened,
|
|
arguments_flattened,
|
|
statements_flattened,
|
|
expr
|
|
).apply_recursive_substitution(&self.substitution);
|
|
|
|
let var = self.use_variable(&v.id);
|
|
// handle return of function call
|
|
let var_to_replace = self.get_latest_var_substitution(&v.id);
|
|
if !(var == var_to_replace) && self.variables.contains(&var_to_replace) && !self.substitution.contains_key(&var_to_replace){
|
|
self.substitution.insert(var_to_replace.clone(),var.clone());
|
|
}
|
|
|
|
statements_flattened.push(FlatStatement::Definition(var, rhs));
|
|
}
|
|
TypedStatement::Condition(expr1, expr2) => {
|
|
|
|
// flatten expr1 and expr2 to n flattened expressions with n the number of primitive types for expr1
|
|
// add n conditions to check equality of the n expressions
|
|
|
|
match (expr1, expr2) {
|
|
(TypedExpression::FieldElement(e1), TypedExpression::FieldElement(e2)) => {
|
|
|
|
let (lhs, rhs) =
|
|
(
|
|
self.flatten_field_expression(
|
|
functions_flattened,
|
|
arguments_flattened,
|
|
statements_flattened,
|
|
e1
|
|
).apply_recursive_substitution(&self.substitution),
|
|
self.flatten_field_expression(
|
|
functions_flattened,
|
|
arguments_flattened,
|
|
statements_flattened,
|
|
e2,
|
|
).apply_recursive_substitution(&self.substitution),
|
|
);
|
|
|
|
if lhs.is_linear() {
|
|
statements_flattened.push(FlatStatement::Condition(lhs, rhs));
|
|
} else if rhs.is_linear() {
|
|
// swap so that left side is linear
|
|
statements_flattened.push(FlatStatement::Condition(rhs, lhs));
|
|
} else {
|
|
unimplemented!()
|
|
}
|
|
|
|
},
|
|
(TypedExpression::Boolean(e1), TypedExpression::Boolean(e2)) => {
|
|
|
|
let (lhs, rhs) =
|
|
(
|
|
self.flatten_boolean_expression(
|
|
functions_flattened,
|
|
arguments_flattened,
|
|
statements_flattened,
|
|
e1
|
|
).apply_recursive_substitution(&self.substitution),
|
|
self.flatten_boolean_expression(
|
|
functions_flattened,
|
|
arguments_flattened,
|
|
statements_flattened,
|
|
e2,
|
|
).apply_recursive_substitution(&self.substitution),
|
|
);
|
|
|
|
if lhs.is_linear() {
|
|
statements_flattened.push(FlatStatement::Condition(lhs, rhs));
|
|
} else if rhs.is_linear() {
|
|
// swap so that left side is linear
|
|
statements_flattened.push(FlatStatement::Condition(rhs, lhs));
|
|
} else {
|
|
unimplemented!()
|
|
}
|
|
},
|
|
_ => panic!("non matching types in condition should have been caught at semantic stage")
|
|
}
|
|
}
|
|
TypedStatement::For(var, start, end, statements) => {
|
|
let mut current = start;
|
|
while current < end {
|
|
statements_flattened.push(FlatStatement::Definition(
|
|
self.use_variable(&var.id),
|
|
FlatExpression::Number(current.clone()),
|
|
));
|
|
for s in statements.clone() {
|
|
self.flatten_statement(
|
|
functions_flattened,
|
|
arguments_flattened,
|
|
statements_flattened,
|
|
s,
|
|
);
|
|
}
|
|
current = T::one() + ¤t;
|
|
}
|
|
}
|
|
TypedStatement::MultipleDefinition(vars, rhs) => {
|
|
|
|
// flatten the right side to p = sum(var_i.type.primitive_count) expressions
|
|
// define p new variables to the right side expressions
|
|
|
|
let var_types = vars.iter().map(|v| v.get_type()).collect();
|
|
|
|
match rhs {
|
|
TypedExpressionList::FunctionCall(fun_id, exprs, _) => {
|
|
let rhs_flattened = self.flatten_function_call(
|
|
functions_flattened,
|
|
arguments_flattened,
|
|
statements_flattened,
|
|
&fun_id,
|
|
var_types,
|
|
&exprs,
|
|
).apply_recursive_substitution(&self.substitution);
|
|
|
|
// this will change for types that have multiple underlying fe
|
|
for (i, v) in vars.into_iter().enumerate() {
|
|
let var = self.use_variable(&v.id);
|
|
// handle return of function call
|
|
let var_to_replace = self.get_latest_var_substitution(&v.id);
|
|
if !(var == var_to_replace) && self.variables.contains(&var_to_replace) && !self.substitution.contains_key(&var_to_replace){
|
|
self.substitution.insert(var_to_replace.clone(),var.clone());
|
|
}
|
|
statements_flattened.push(FlatStatement::Definition(var, rhs_flattened.expressions[i].clone()));
|
|
}
|
|
},
|
|
}
|
|
},
|
|
}
|
|
}
|
|
|
|
/// Returns a flattened `TypedFunction` based on the given `funct`.
|
|
///
|
|
/// # Arguments
|
|
///
|
|
/// * `functions_flattened` - Vector where new flattened functions can be added.
|
|
/// * `funct` - `TypedFunction` that will be flattened.
|
|
pub fn flatten_function<T: Field>(
|
|
&mut self,
|
|
functions_flattened: &mut Vec<FlatFunction<T>>,
|
|
funct: TypedFunction<T>,
|
|
) -> FlatFunction<T> {
|
|
self.variables = HashSet::new();
|
|
self.substitution = DirectSubstitution::new();
|
|
|
|
self.bijection = BiMap::new();
|
|
|
|
self.next_var_idx = 0;
|
|
|
|
let mut arguments_flattened: Vec<FlatParameter> = Vec::new();
|
|
let mut statements_flattened: Vec<FlatStatement<T>> = Vec::new();
|
|
// push parameters
|
|
for arg in &funct.arguments {
|
|
let arg_type = arg.id.get_type();
|
|
|
|
match arg_type {
|
|
Type::FieldElement => {
|
|
arguments_flattened.push(FlatParameter {
|
|
id: self.use_variable(&arg.id.id),
|
|
private: arg.private
|
|
});
|
|
},
|
|
Type::Boolean => {
|
|
arguments_flattened.push(FlatParameter {
|
|
id: self.use_variable(&arg.id.id),
|
|
private: arg.private
|
|
});
|
|
},
|
|
}
|
|
}
|
|
|
|
// flatten statements in functions and apply substitution
|
|
for stat in funct.statements {
|
|
self.flatten_statement(
|
|
functions_flattened,
|
|
&arguments_flattened,
|
|
&mut statements_flattened,
|
|
stat,
|
|
);
|
|
}
|
|
|
|
FlatFunction {
|
|
id: funct.id.clone(),
|
|
arguments: arguments_flattened,
|
|
statements: statements_flattened,
|
|
signature: funct.signature
|
|
}
|
|
}
|
|
|
|
/// Returns a flattened `Prog`ram based on the given `prog`.
|
|
///
|
|
/// # Arguments
|
|
///
|
|
/// * `prog` - `Prog`ram that will be flattened.
|
|
pub fn flatten_program<T: Field>(&mut self, prog: TypedProg<T>) -> FlatProg<T> {
|
|
let mut functions_flattened = Vec::new();
|
|
|
|
self.load_stdlib(&mut functions_flattened);
|
|
|
|
for func in prog.imported_functions {
|
|
functions_flattened.push(func);
|
|
}
|
|
|
|
for func in prog.functions {
|
|
let flattened_func = self.flatten_function(&mut functions_flattened, func);
|
|
functions_flattened.push(flattened_func);
|
|
}
|
|
|
|
FlatProg {
|
|
functions: functions_flattened
|
|
}
|
|
}
|
|
|
|
|
|
/// Checks if the given name is a not used variable and returns a fresh variable.
|
|
/// # Arguments
|
|
///
|
|
/// * `name` - a String that holds the name of the variable
|
|
fn use_variable(&mut self, name: &String) -> FlatVariable {
|
|
// issue the variable we'll use
|
|
let var = self.issue_new_variable();
|
|
|
|
// {
|
|
// // we check if the name was already given a variable
|
|
// let id = self.bijection.get_by_left(name);
|
|
|
|
// match id {
|
|
// Some(id) => {
|
|
// // the name was already registered. We need to find its latest substitution
|
|
// let mut id = *id;
|
|
// // loop {
|
|
// // match self.substitution.get(&id) {
|
|
// // Some(x) => id = x,
|
|
// // None => break,
|
|
// // }
|
|
// // }
|
|
// // now `id` is the latest substitution of `name`
|
|
|
|
// // link it to the previous one
|
|
// //assert!(!(id == var));
|
|
// //self.bijection.insert(name.to_string(), var);
|
|
// },
|
|
// None => {
|
|
|
|
// }
|
|
// }
|
|
// }
|
|
|
|
self.bijection.insert(name.to_string(), var);
|
|
var
|
|
}
|
|
|
|
fn issue_new_variable(&mut self) -> FlatVariable {
|
|
let var = FlatVariable::new(self.next_var_idx);
|
|
self.next_var_idx += 1;
|
|
var
|
|
}
|
|
|
|
fn use_sym(&mut self) -> FlatVariable {
|
|
let name = format!("sym_{}", self.next_var_idx);
|
|
let var = self.issue_new_variable();
|
|
self.bijection.insert(name, var);
|
|
var
|
|
}
|
|
|
|
fn get_latest_var_substitution(&mut self, name: &String) -> FlatVariable {
|
|
// start with the variable name
|
|
let latest_var = self.bijection.get_by_left(name).unwrap().clone();
|
|
// loop {
|
|
// // walk the substitutions
|
|
// match self.substitution.get(&latest_var) {
|
|
// Some(x) => latest_var = x,
|
|
// None => break,
|
|
// }
|
|
// }
|
|
latest_var
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use super::*;
|
|
use field::FieldPrime;
|
|
use types::Type;
|
|
use types::Signature;
|
|
use absy::variable::Variable;
|
|
|
|
#[test]
|
|
fn multiple_definition() {
|
|
|
|
// def foo()
|
|
// return 1, 2
|
|
// def main()
|
|
// a, b = foo()
|
|
|
|
let mut flattener = Flattener::new(FieldPrime::get_required_bits());
|
|
let mut functions_flattened = vec![
|
|
FlatFunction {
|
|
id: "foo".to_string(),
|
|
arguments: vec![],
|
|
statements: vec![FlatStatement::Return(
|
|
FlatExpressionList {
|
|
expressions: vec![
|
|
FlatExpression::Number(FieldPrime::from(1)),
|
|
FlatExpression::Number(FieldPrime::from(2))
|
|
]
|
|
}
|
|
)],
|
|
signature: Signature::new()
|
|
.inputs(vec![])
|
|
.outputs(vec![Type::FieldElement, Type::FieldElement])
|
|
}
|
|
];
|
|
let arguments_flattened = vec![];
|
|
let mut statements_flattened = vec![];
|
|
let statement = TypedStatement::MultipleDefinition(
|
|
vec![
|
|
Variable::field_element("a".to_string()),
|
|
Variable::field_element("b".to_string())
|
|
],
|
|
TypedExpressionList::FunctionCall("foo".to_string(), vec![], vec![Type::FieldElement, Type::FieldElement])
|
|
);
|
|
|
|
flattener.flatten_statement(
|
|
&mut functions_flattened,
|
|
&arguments_flattened,
|
|
&mut statements_flattened,
|
|
statement,
|
|
);
|
|
|
|
let a = FlatVariable::new(0);
|
|
|
|
assert_eq!(
|
|
statements_flattened[0]
|
|
,
|
|
FlatStatement::Definition(a, FlatExpression::Number(FieldPrime::from(1)))
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn multiple_definition2() {
|
|
|
|
// def dup(x)
|
|
// return x, x
|
|
// def main()
|
|
// a, b = dup(2)
|
|
|
|
let a = FlatVariable::new(0);
|
|
|
|
let mut flattener = Flattener::new(FieldPrime::get_required_bits());
|
|
let mut functions_flattened = vec![
|
|
FlatFunction {
|
|
id: "dup".to_string(),
|
|
arguments: vec![FlatParameter { id: a, private: true }],
|
|
statements: vec![FlatStatement::Return(
|
|
FlatExpressionList {
|
|
expressions: vec![
|
|
FlatExpression::Identifier(a),
|
|
FlatExpression::Identifier(a),
|
|
]
|
|
}
|
|
)],
|
|
signature: Signature::new()
|
|
.inputs(vec![Type::FieldElement])
|
|
.outputs(vec![Type::FieldElement, Type::FieldElement])
|
|
}
|
|
];
|
|
let statement = TypedStatement::MultipleDefinition(
|
|
vec![
|
|
Variable::field_element("a".to_string()),
|
|
Variable::field_element("b".to_string())
|
|
],
|
|
TypedExpressionList::FunctionCall("dup".to_string(), vec![TypedExpression::FieldElement(FieldElementExpression::Number(FieldPrime::from(2)))], vec![Type::FieldElement, Type::FieldElement])
|
|
);
|
|
|
|
let fun = TypedFunction {
|
|
id: String::from("main"),
|
|
arguments: vec![],
|
|
statements: vec![statement],
|
|
signature: Signature {
|
|
inputs: vec![],
|
|
outputs: vec![]
|
|
}
|
|
};
|
|
|
|
let f = flattener.flatten_function(
|
|
&mut functions_flattened,
|
|
fun,
|
|
);
|
|
|
|
let a = FlatVariable::new(0);
|
|
|
|
assert_eq!(
|
|
f.statements[0]
|
|
,
|
|
FlatStatement::Definition(a, FlatExpression::Number(FieldPrime::from(2)))
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn simple_definition() {
|
|
|
|
// def foo()
|
|
// return 1
|
|
// def main()
|
|
// a = foo()
|
|
|
|
let mut flattener = Flattener::new(FieldPrime::get_required_bits());
|
|
let mut functions_flattened = vec![
|
|
FlatFunction {
|
|
id: "foo".to_string(),
|
|
arguments: vec![],
|
|
statements: vec![FlatStatement::Return(
|
|
FlatExpressionList {
|
|
expressions: vec![
|
|
FlatExpression::Number(FieldPrime::from(1))
|
|
]
|
|
}
|
|
)],
|
|
signature: Signature::new()
|
|
.inputs(vec![])
|
|
.outputs(vec![Type::FieldElement])
|
|
}
|
|
];
|
|
let arguments_flattened = vec![];
|
|
let mut statements_flattened = vec![];
|
|
let statement = TypedStatement::Definition(
|
|
Variable::field_element("a".to_string()),
|
|
TypedExpression::FieldElement(FieldElementExpression::FunctionCall("foo".to_string(), vec![]))
|
|
);
|
|
|
|
flattener.flatten_statement(
|
|
&mut functions_flattened,
|
|
&arguments_flattened,
|
|
&mut statements_flattened,
|
|
statement,
|
|
);
|
|
|
|
let a = FlatVariable::new(0);
|
|
|
|
assert_eq!(
|
|
statements_flattened[0]
|
|
,
|
|
FlatStatement::Definition(a, FlatExpression::Number(FieldPrime::from(1)))
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn redefine_argument() {
|
|
|
|
// def foo(a)
|
|
// a = a + 1
|
|
// return 1
|
|
|
|
// should flatten to no redefinition
|
|
// def foo(a)
|
|
// a_0 = a + 1
|
|
// return 1
|
|
|
|
let mut flattener = Flattener::new(FieldPrime::get_required_bits());
|
|
let mut functions_flattened = vec![];
|
|
|
|
let funct = TypedFunction {
|
|
id: "foo".to_string(),
|
|
signature: Signature::new()
|
|
.inputs(vec![Type::FieldElement])
|
|
.outputs(vec![Type::FieldElement])
|
|
,
|
|
arguments: vec![Parameter { id: Variable::field_element("a"), private: true }],
|
|
statements: vec![
|
|
TypedStatement::Definition(
|
|
Variable::field_element("a".to_string()),
|
|
FieldElementExpression::Add(
|
|
box FieldElementExpression::Identifier("a".to_string()),
|
|
box FieldElementExpression::Number(FieldPrime::from(1))
|
|
).into()
|
|
),
|
|
TypedStatement::Return(
|
|
vec![FieldElementExpression::Number(FieldPrime::from(1)).into()]
|
|
)
|
|
],
|
|
};
|
|
|
|
let flat_funct = flattener.flatten_function(
|
|
&mut functions_flattened,
|
|
funct,
|
|
);
|
|
|
|
let a = FlatVariable::new(0);
|
|
let a_0 = FlatVariable::new(1);
|
|
|
|
assert_eq!(
|
|
flat_funct.statements[0],
|
|
FlatStatement::Definition(a_0, FlatExpression::Add(box FlatExpression::Identifier(a), box FlatExpression::Number(FieldPrime::from(1))))
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn call_with_def() {
|
|
// def foo():
|
|
// a = 3
|
|
// return a
|
|
|
|
// def main():
|
|
// return foo()
|
|
|
|
let foo = TypedFunction {
|
|
id: String::from("foo"),
|
|
arguments: vec![],
|
|
statements: vec![
|
|
TypedStatement::Definition(Variable::field_element("a"), FieldElementExpression::Number(FieldPrime::from(3)).into()),
|
|
TypedStatement::Return(vec![
|
|
FieldElementExpression::Identifier(String::from("a")).into()
|
|
]
|
|
)
|
|
],
|
|
signature: Signature {
|
|
inputs: vec![],
|
|
outputs: vec![Type::FieldElement]
|
|
}
|
|
};
|
|
|
|
let main = TypedFunction {
|
|
id: String::from("main"),
|
|
arguments: vec![],
|
|
statements: vec![
|
|
TypedStatement::Return(vec![
|
|
FieldElementExpression::FunctionCall(String::from("foo"), vec![]).into()
|
|
]
|
|
)
|
|
],
|
|
signature: Signature {
|
|
inputs: vec![],
|
|
outputs: vec![Type::FieldElement]
|
|
}
|
|
};
|
|
|
|
let mut flattener = Flattener::new(FieldPrime::get_required_bits());
|
|
|
|
let foo_flattened = flattener.flatten_function(
|
|
&mut vec![],
|
|
foo
|
|
);
|
|
|
|
let expected = FlatFunction {
|
|
id: String::from("main"),
|
|
arguments: vec![],
|
|
statements: vec![
|
|
FlatStatement::Definition(FlatVariable::new(0), FlatExpression::Number(FieldPrime::from(3))),
|
|
FlatStatement::Return(FlatExpressionList {
|
|
expressions: vec![FlatExpression::Identifier(FlatVariable::new(0))]
|
|
})
|
|
],
|
|
signature: Signature::new().outputs(vec![Type::FieldElement])
|
|
};
|
|
|
|
|
|
let main_flattened = flattener.flatten_function(
|
|
&mut vec![foo_flattened],
|
|
main
|
|
);
|
|
|
|
assert_eq!(main_flattened, expected);
|
|
}
|
|
|
|
|
|
#[test]
|
|
fn powers() {
|
|
// def main():
|
|
// _0 = 7
|
|
// _1 = (_0 * _0)
|
|
// _2 = (_1 * _0)
|
|
// _3 = (_2 * _0)
|
|
// return _3
|
|
|
|
let function = TypedFunction {
|
|
id: String::from("main"),
|
|
arguments: vec![],
|
|
statements: vec![
|
|
TypedStatement::Definition(Variable::field_element("a"), FieldElementExpression::Number(FieldPrime::from(7)).into()),
|
|
TypedStatement::Definition(Variable::field_element("b"), FieldElementExpression::Pow(box FieldElementExpression::Identifier(String::from("a")), box FieldElementExpression::Number(FieldPrime::from(4))).into()),
|
|
TypedStatement::Return(vec![
|
|
FieldElementExpression::Identifier(String::from("b")).into()
|
|
]
|
|
)
|
|
],
|
|
signature: Signature {
|
|
inputs: vec![],
|
|
outputs: vec![Type::FieldElement]
|
|
}
|
|
};
|
|
|
|
let mut flattener = Flattener::new(FieldPrime::get_required_bits());
|
|
|
|
let expected = FlatFunction {
|
|
id: String::from("main"),
|
|
arguments: vec![],
|
|
statements: vec![
|
|
FlatStatement::Definition(FlatVariable::new(0), FlatExpression::Number(FieldPrime::from(7))),
|
|
FlatStatement::Definition(FlatVariable::new(1), FlatExpression::Mult(box FlatExpression::Identifier(FlatVariable::new(0)), box FlatExpression::Identifier(FlatVariable::new(0)))),
|
|
FlatStatement::Definition(FlatVariable::new(2), FlatExpression::Mult(box FlatExpression::Identifier(FlatVariable::new(1)), box FlatExpression::Identifier(FlatVariable::new(0)))),
|
|
FlatStatement::Definition(FlatVariable::new(3), FlatExpression::Mult(box FlatExpression::Identifier(FlatVariable::new(2)), box FlatExpression::Identifier(FlatVariable::new(0)))),
|
|
FlatStatement::Return(FlatExpressionList {
|
|
expressions: vec![
|
|
FlatExpression::Identifier(FlatVariable::new(3))
|
|
]
|
|
})
|
|
],
|
|
signature: Signature::new().outputs(vec![Type::FieldElement])
|
|
};
|
|
|
|
let flattened = flattener.flatten_function(
|
|
&mut vec![],
|
|
function
|
|
);
|
|
|
|
assert_eq!(flattened, expected);
|
|
}
|
|
|
|
#[test]
|
|
fn overload() {
|
|
|
|
// def foo()
|
|
// return 1
|
|
// def foo()
|
|
// return 1, 2
|
|
// def main()
|
|
// a = foo()
|
|
// b, c = foo()
|
|
// return 1
|
|
//
|
|
// should not panic
|
|
//
|
|
|
|
let mut flattener = Flattener::new(FieldPrime::get_required_bits());
|
|
let functions = vec![
|
|
TypedFunction {
|
|
id: "foo".to_string(),
|
|
arguments: vec![],
|
|
statements: vec![TypedStatement::Return(
|
|
vec![
|
|
TypedExpression::FieldElement(FieldElementExpression::Number(FieldPrime::from(1)))
|
|
]
|
|
)],
|
|
signature: Signature::new()
|
|
.inputs(vec![])
|
|
.outputs(vec![Type::FieldElement])
|
|
,
|
|
},
|
|
TypedFunction {
|
|
id: "foo".to_string(),
|
|
arguments: vec![],
|
|
statements: vec![TypedStatement::Return(
|
|
vec![
|
|
TypedExpression::FieldElement(FieldElementExpression::Number(FieldPrime::from(1))),
|
|
TypedExpression::FieldElement(FieldElementExpression::Number(FieldPrime::from(2)))
|
|
]
|
|
)],
|
|
signature: Signature::new()
|
|
.inputs(vec![])
|
|
.outputs(vec![Type::FieldElement, Type::FieldElement])
|
|
,
|
|
},
|
|
TypedFunction {
|
|
id: "main".to_string(),
|
|
arguments: vec![],
|
|
statements: vec![
|
|
TypedStatement::Definition(Variable::field_element("a".to_string()), TypedExpression::FieldElement(FieldElementExpression::FunctionCall("foo".to_string(), vec![]))),
|
|
TypedStatement::MultipleDefinition(vec![Variable::field_element("b".to_string()), Variable::field_element("c".to_string())], TypedExpressionList::FunctionCall("foo".to_string(), vec![], vec![Type::FieldElement, Type::FieldElement])),
|
|
TypedStatement::Return(
|
|
vec![TypedExpression::FieldElement(FieldElementExpression::Number(FieldPrime::from(1)))]
|
|
)
|
|
],
|
|
signature: Signature::new()
|
|
.inputs(vec![])
|
|
.outputs(vec![Type::FieldElement])
|
|
,
|
|
}
|
|
];
|
|
|
|
flattener.flatten_program(
|
|
TypedProg {
|
|
functions: functions,
|
|
imported_functions: vec![],
|
|
imports: vec![]
|
|
}
|
|
);
|
|
|
|
// shouldn't panic
|
|
}
|
|
|
|
#[test]
|
|
fn if_else() {
|
|
|
|
let expression =
|
|
FieldElementExpression::IfElse(
|
|
box BooleanExpression::Eq(
|
|
box FieldElementExpression::Number(FieldPrime::from(32)),
|
|
box FieldElementExpression::Number(FieldPrime::from(4))
|
|
),
|
|
box FieldElementExpression::Number(FieldPrime::from(12)),
|
|
box FieldElementExpression::Number(FieldPrime::from(51)),
|
|
);
|
|
|
|
|
|
let mut functions_flattened = vec![];
|
|
let mut flattener = Flattener::new(FieldPrime::get_required_bits());
|
|
|
|
flattener.load_stdlib(&mut functions_flattened);
|
|
|
|
flattener.flatten_field_expression(
|
|
&functions_flattened,
|
|
&vec![],
|
|
&mut vec![],
|
|
expression
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn bool_and() {
|
|
let expression =
|
|
FieldElementExpression::IfElse(
|
|
box BooleanExpression::And(
|
|
box BooleanExpression::Eq(
|
|
box FieldElementExpression::Number(FieldPrime::from(4)),
|
|
box FieldElementExpression::Number(FieldPrime::from(4))
|
|
),
|
|
box BooleanExpression::Lt(
|
|
box FieldElementExpression::Number(FieldPrime::from(4)),
|
|
box FieldElementExpression::Number(FieldPrime::from(20))
|
|
),
|
|
),
|
|
box FieldElementExpression::Number(FieldPrime::from(12)),
|
|
box FieldElementExpression::Number(FieldPrime::from(51)),
|
|
);
|
|
|
|
|
|
let mut functions_flattened = vec![];
|
|
let mut flattener = Flattener::new(FieldPrime::get_required_bits());
|
|
|
|
flattener.load_stdlib(&mut functions_flattened);
|
|
|
|
flattener.flatten_field_expression(
|
|
&functions_flattened,
|
|
&vec![],
|
|
&mut vec![],
|
|
expression
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn next_variable() {
|
|
let mut flattener = Flattener::new(FieldPrime::get_required_bits());
|
|
assert_eq!(FlatVariable::new(0), flattener.use_variable(&String::from("a")));
|
|
assert_eq!(flattener.get_latest_var_substitution(&String::from("a")), FlatVariable::new(0));
|
|
assert_eq!(FlatVariable::new(1), flattener.use_variable(&String::from("a")));
|
|
assert_eq!(flattener.get_latest_var_substitution(&String::from("a")), FlatVariable::new(1));
|
|
assert_eq!(FlatVariable::new(2), flattener.use_variable(&String::from("a")));
|
|
assert_eq!(flattener.get_latest_var_substitution(&String::from("a")), FlatVariable::new(2));
|
|
}
|
|
}
|